Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates.
نویسندگان
چکیده
We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs.
منابع مشابه
Genomic regulatory blocks underlie extensive microsynteny conservation in insects.
Insect genomes contain larger blocks of conserved gene order (microsynteny) than would be expected under a random breakage model of chromosome evolution. We present evidence that microsynteny has been retained to keep large arrays of highly conserved noncoding elements (HCNEs) intact. These arrays span key developmental regulatory genes, forming genomic regulatory blocks (GRBs). We recently des...
متن کاملUCNEbase—a database of ultraconserved non-coding elements and genomic regulatory blocks
UCNEbase (http://ccg.vital-it.ch/UCNEbase) is a free, web-accessible information resource on the evolution and genomic organization of ultra-conserved non-coding elements (UCNEs). It currently covers 4351 such elements in 18 different species. The majority of UCNEs are supposed to be transcriptional regulators of key developmental genes. As most of them occur as clusters near potential target g...
متن کاملMapping cis-regulatory domains in the human genome using multi-species conservation of synteny.
Our inability to associate distant regulatory elements with the genes they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries, we used whole-genome human-mouse-chicken (HMC...
متن کاملCEGA—a catalog of conserved elements from genomic alignments
By identifying genomic sequence regions conserved among several species, comparative genomics offers opportunities to discover putatively functional elements without any prior knowledge of what these functions might be. Comparative analyses across mammals estimated 4-5% of the human genome to be functionally constrained, a much larger fraction than the 1-2% occupied by annotated protein-coding ...
متن کاملHomologous synteny Block Detection Based on Suffix Tree Algorithms
A synteny block represents a set of contiguous genes located within the same chromosome and well conserved among various species. Through long evolutionary processes and genome rearrangement events, large numbers of synteny blocks remain highly conserved across multiple species. Understanding distribution of conserved gene blocks facilitates evolutionary biologists to trace the diversity of lif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2007